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Interplay of electron-phonon interaction and strong correlations: DMFT+3, study
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We perform investigation of the Hubbard model with interaction between strongly correlated conducting
electrons on a lattice with Debye phonons. To solve the problem generalized dynamical mean-field DMFT
+2 method is employed with “external” self-energy 2, corresponding to electron-phonon interaction. We

present DMFT+3,

results for densities of states and kinks in energy dispersions for a variety of model

parameters, analyzing the interplay of recently discovered kinks of purely electronic nature and usual phonon

kinks in the electronic spectrum.

DOI: 10.1103/PhysRevB.80.115124

I. INTRODUCTION

The problem of the interplay of strong electronic correla-
tions with electron-phonon interaction is of central impor-
tance in the physics of highly correlated systems. Actually
there is a rather long history of such studies, e.g., one of the
most popular models for electron-phonon interaction (EPI) in
strongly correlated systems is the so-called Hubbard-
Holstein model (HHM). The Hubbard model’ itself describes
local Coulomb interaction of electrons on a lattice including,
e.g., Mott-Hubbard metal-insulator transition. On the other
hand the Holstein model contains local linear displacement-
to-density interaction of conducting electrons with local
(Einstein) phonon modes.>

Active investigations of the properties of the HHM were
undertaken in the framework of dynamical mean-field theory
(DMFT),? which is a nonperturbative approach with respect
to interaction parameters of the Hubbard model. Among
many others one should mention DMFT solution of HHM
for the case where the impurity solver used was the numeri-
cal renormalization group (NRG) [for review of DMFT
(NRG) applications see Ref. 4]. The mapping of HHM to
Anderson-Holstein impurity was first performed by Hewson
and Mayer. It was shown that using NRG one can compute
in a numerically exact manner total electron-phonon contri-
bution to the self-energy of the problem, thus making solu-
tion of the HHM nonperturbative also with respect to
electron-phonon coupling strength. One should note that the
self-consistent set of DMFT equations is preserved in this
approach.

However, up to now there are apparently no studies of
strongly correlated electrons interacting with Debye
phonons. It is even more surprising in view of the widely
discussed physics of kinks in electronic dispersion observed
in ARPES experiments 40-70 meV below the Fermi level of
high-temperature superconductors,® which are often attrib-
uted to EPL.” To our knowledge the problem of kink forma-
tion on electronic dispersion caused by EPI in strongly cor-
related systems was briefly discussed within HHM in papers
by Hague® and Koller et al.’

In this paper we report DMFT+3 results for the Hubbard
model supplemented with Debye phonons, assuming the va-
lidity of Migdal theorem (adiabatic approximation). We con-
sider the influence of Debye phonons on the weakly and
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strongly correlated electrons, studying electron dispersion
and density of states (DOS), in particular close to Mott-
Hubbard metal-insulator transition. We analyze in detail how
EPI affects electronic dispersions in correlated metal and dis-
cuss the interplay of recently discovered kinks of purely
electronic nature in electronic dispersion'? and usual phonon
kinks in the electronic spectra.

The paper is organized as follows. First we introduce in
Sec. I DMFT+2 approach to the model at hand. Then in
Sec. III calculated results are presented and discussed. Sum-
mary and conclusions are given in Sec. I'V.

II. DMFT+3 COMPUTATIONAL DETAILS

The major assumption of our DMFT+2, approach is that
the lattice and time Fourier transform of the single-particle
Green’s function can be written as

1
e+ pn—e(p)—3(c) - Sy(e)’

where g(p) is the bare electron dispersion, (&) is the local
self-energy of DMFT, while 2,(e) is some “external” (in
general case momentum dependent) self-energy. The advan-
tage of our generalized approach is the additive form of the
self-energy (neglect of interference) in Eq. (1)."'-13 It allows
one to keep the set of self-consistent equations of standard
DMEFT.? However there are two distinctions. First, on each
DMFT iteration we recalculate corresponding external self-
energy 2,(u,&,[2(e)]) within some (approximate) scheme,
taking into account interactions, e.g., with collective modes
(phonons, magnons, etc.) or some order-parameter fluctua-
tions. Second, the local Green’s function of effective impu-
rity problem is defined as

1 1
Gile) = X,Ep: e+p—e(p)—2(e) -Zy(e) ?

at each step of the standard DMFT procedure.

Eventually, we get the desired Green’s function in the
form of Eq. (1), where 2(&) and 2,(¢) are those appearing at
the end of our iteration procedure. To treat electron-phonon
interaction for strongly correlated system we just introduce
2,(e)=2,,(e,p) due to electron-phonon interaction within
the usual Frohlich model. To solve single impurity Anderson

Gyle) = (1)
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problem we use NRG.* All calculations are done at nearly
zero temperature and at half filling. For “bare” electrons we
assume semielliptic DOS with half bandwidth D.
According to the Migdal theorem in adiabatic approxi-
mation'* we can restrict ourselves with the simplest

w(k)
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first-order contribution to X ,,(¢,p), shown by diagram in
Fig. 1. The main advantage of this is the possibility to ne-
glect any order vertex corrections due to electron-phonon

coupling which are small over adiabatic parameter l:—f <114
Contribution shown in Fig. 1 can be written as

: 3)

2ph(g’p) = 1822

where g is the usual electron-phonon interaction constant and
wy(k) is the phonon dispersion, which in our case is taken as
in the standard Debye model

w
wok) =ulk|, |k| < 7” (4)

Here u is the sound velocity and wj, is Debye frequency.
Actually 3, (¢, p) defined by Eq. (3) is momentum indepen-
dent. Direct calculations (see, e.g., Ref. 15) for the case of
Debye spectra [Eq. (4)] produce the lowest-order contribu-
tion to the self-energy [Eq. (3)] in the following form

.2 +00 2 2

—-ig dw wp—

2,n(e) = 4_wa_m Zr{ wp + ’ln DT
+ iﬂ'wzé’(wé - wz)}l(s + w) (5)

with
+D
_ No(§)

I(e) = L) T (6)

where E,=g—-2(g)-2,,(¢) and w,=ppu is a characteristic
frequency of the order of wp. For the case of semielliptic
noninteracting DOS Ny(e) with half-bandwidth D we get

1o = §<E8 E-D?). )

It is convenient to introduce the dimensionless electron-
phonon coupling constant as'>

, =
- —~—
- ~

FIG. 1. Migdal-type contribution to electron-phonon self-energy
included in DMFT+2,;, scheme.

ox @ —wyk)+ide+w+u—e(p+k)-S(e+w) -2 (e + 0,p+k)’

2
w

N =g No(er)—5. 8
8"No(eF) 10 (8)
To simplify our analysis we shall not perform fully self-
consistent calculations neglecting phonon renormalization
due to EPL "> assuming that the phonon spectrum [Eq. (4)] is

fixed by the experiment.

III. RESULTS AND DISCUSSION

Let us start from comparison between pure DMFT and
DMFT+2,, DOSs for strong (U/2D=125) and weak
(U/2D=0.625) Hubbard interaction presented in Fig. 2 on
upper and lower panels correspondingly. Dimensionless EPI
constant [Eq. (8)] used in these calculations was A=0.8 and
Debye frequency wp=0.125 D. In both cases we observe
some spectral-weight redistribution due to EPI. For U/2D
=1.25 (upper panel of Fig. 2) we see the well-developed
three-peak structure typical for strongly correlated metals. In
the energy interval * wp, around the Fermi energy (which is
taken as zero energy at all figures below) there is almost no
difference in the DOS quasiparticle peak line shape obtained
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FIG. 2. Comparison of DOSs obtained within standard DMFT
(dashed lines) and DMFT+3, ,;, (solid lines) methods for strong (up-
per panel, U/2D=1.25) and weak (lower panel, U/2D=0.625)
Hubbard interaction regimes. Dimensionless electron-phonon cou-
pling constant A=0.8.
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FIG. 3. Sequence of DOSs obtained within standard DMFT
(dashed lines) and DMFT+2,,,;, (solid lines) methods close to metal-
insulator transition (from top left to bottom right) with A=0.8.

from pure DMFT and DMFT+2P,1. However outside this
interval DMFT+2, quasiparticle peak becomes signifi-
cantly broader with spectral weight coming from Hubbard
bands. This broadening of DMFT+ZX.,, quasiparticle peak
leads as we show below to inhibiting of metal to insulator
transition. In the case of U/2D=0.625 there are no clear
Hubbard bands formed but only some “side wings” are ob-
served. Spectral-weight redistribution in the lower panel of
Fig. 2 is not dramatic, though qualitatively different from the
case of U/2D=1.25. Namely, main deviations between pure
DMFT and DMFT+3, , happen in the interval = wp, where
one can observe a kind of “cap” in DMFT+2,,, DOS. Cor-
responding spectral weight goes to the energies around * U,
where Hubbard bands are supposed to form.

In Fig. 3 we compare the behavior of pure DMFT and
DMFT+2,,, DOSs for different U/2D values close to Mott-
Hubbard metal-insulator transition. For U/2D=1.56 both
standard DMFT and DMFT+3, produce insulating solu-
tion. However there is some difference between these solu-
tions. The DMFT+2, ,, Hubbard bands are lower and broader
than DMFT ones because of additional interaction (EPI) in-
cluded. With decrease in U for U/2D=1.51 and 1.47 we
observe that DMFT+3, pn Tesults correspond to metallic state
(with narrow quasiparticle peak at the Fermi level) while
conventional DMFT still produces insulating solution. Only
around U/2D=1.43 both DMFT and DMFT+ZX,,, results
turn out to be metallic. Overall DOSs lineshape is the same
as discussed above. Thus with increase in U finite EPI
slightly inhibits Mott-Hubbard transition from metallic to in-
sulating phase. This result is similar to what was observed
for the HHM in weak EPI regime.!®-!3

For more deep insight into these results let us analyze the
structure of corresponding self-energies (&) and Eph(s). In
Fig. 4 we show both real and imaginary parts of these self-
energies. EPI changes 2 (e) rather significantly (see upper
panel of Fig. 4). At the same time in * wj, energy interval we
find that slopes of real parts of both self-energies (which
determines quasiparticle weight in the Fermi-liquid theory)
are almost the same while imaginary parts are very close to
zero. Thus quasiparticle peaks should be essentially identical
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FIG. 4. (Color online) Upper panel—comparison of standard
DMFT self-energies 2(e) (dashed lines) with self-energies renor-
malized by phonons and obtained within the DMFT+2Ph approxi-
mation (solid lines). Lower panel—EPI self-energies X,,(¢). Black
lines—real parts, gray (red) lines—imaginary parts. A=0.8 and
U/2D=1.25.

in this region as we showed above (Fig. 2). At energies
higher than Debye frequencies Re X (g) goes steeper with
respect to Re(%+2,,), making DMFT quasiparticle peak in
DOS narrower above wy, thus providing faster metal to insu-
lator transition at A=0. For the case of U/2D=0.625 (not
shown here) pure DMFT self-energy and those with the ac-
count of EPI are nearly identical. Corresponding ., is very
close to that obtained due to phonons only and shown in the
lower panel of Fig. 4 with dashed lines. It produces only the
cap in the DOS around the Fermi level mentioned above.
One can say also that such a cap appears in DOS when
energy interval 2wp is much smaller than the quasiparticle
peak width.

Now we address the issue of a sudden change in the slope
of electronic dispersion, the so-called kinks. It is well known
that interaction of electrons with some bosonic mode pro-
duces such a kink. In the case of EPI typical kink energy is
just the Debye frequency wp. Kinks of purely electronic na-
ture were recently reported in Ref. 10.

The energy of purely electronic kink as derived in Ref. 10
for semielliptic bare DOS is given by

" =Zm (N2 1)D, )

where D is the half of bare bandwidth and Zg;.
=(1- %222 |8=8F)‘1 is Fermi-liquid quasiparticle weight. The
rough estimate of " is given by the half width of quasipar-
ticle peak of DOS at its half height. Schematic pictures of
kinks of both kinds close to the Fermi level are shown in Fig.
5. Electronic kink (on the right side) is rather “round” and
usually hard to see. This kink is formed by the smaller slope
connection of two split branches with initial slope (dashed
line) at energy = w". Far away from the Fermi level both of
these branches return to the initial dispersion. In contrast the
phonon kink produces rather sharp deviation from the initial
dispersion at wp but outside *=w, energy interval electron
dispersion quickly returns to the initial one.
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FIG. 5. Schematic picture of pure electronic kink [panel (a)] and
phonon kink [panel (b)] in electron energy dispersion near the
Fermi level. e"—bare energy dispersion with no interactions in-
cluded; ep—dispersion around the Fermi level with electron inter-
action included; w*—electronic kink energy; wp—phonon kink
(Debye) energy; Jp, and &p,,—shifts of dispersion due to pure
electronic and phonon kinks.

Our calculations clearly demonstrate that electronic kinks
are hardly observable on the background of phonon kinks
(as, e.g., in upper panel of Fig. 4) and special care should be
taken to separate them by rather fine tuning of the parameters
of our model. To clarify this situation we introduce an addi-
tional characteristic of the kink—the shift of electron disper-
sion in momentum space dp at kink energy. From simple
geometry we estimate for phonon kinks

Sppn =2\, (10)
Uf

where v is the bare Fermi velocity and N was defined in Eq.
(8). For electronic kink the similar estimate is

8p.= %(1 —ﬂ) =2, (11)
Up Z Up

where Z; is quasiparticle weight in the case of absence of
electronic kinks (the same as Z, defined in Ref. 10). Veloc-
ity v} is the Fermi velocity of initial dispersion but it cannot
be just a bare one. As was reported in Ref. 10 electronic
kinks can be observed only for rather strong Hubbard inter-
action when three-peak structure in the DOS is well devel-
oped and electronic dispersion is strongly renormalized by
correlation effects. This renormalization is determined by A,
defined in Eq. (10), which can be seen as kind of dimension-
less interaction constant. In the case when both slopes on the
Fermi level and out of " energy interval are equal there
will be no electronic kink at all.

Now we can choose parameters of our model to make
both kinks simultaneously visible. First of all one should
take care that wp<w®. For U/2D=1 with U=3.5 eV we get
®*~0.1 D and a reasonable value of Debye frequency is
wp~0.01 D. To make phonon kink pronounced at such rela-
tively low Debye frequency [cf. Eq. (10)] we have to in-
crease EPI constant. So we take A=2.0. Corresponding qua-
siparticle peaks of the DOS together with Re(2+%,,) are
shown in Fig. 6: in the left panel EPI is switched off while in
the right panel it is switched on. We can see that 20" is
approximately width of the quasiparticle peak of well-
developed three-peak structure (see upper panel of Fig. 2)
and energy position of electronic kinks are marked by ar-
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FIG. 6. (Color online) Quasiparticle part of DOSs (see Fig. 2,
upper panel) (red line) and corresponding real part of additive self-
energy Re(%+3,,) with electron-phonon coupling switched off
(left panel) and switched on (right panel). A=2.0 and U/2D=1.

rows. On the right side of Fig. 6, where EPI is present, pho-
non kinks at = wp are clearly visible and well separated in
energy from electronic kink position.

To demonstrate coexistence of both these types of kinks
we take a look at energy dispersion of simple cubic lattice
with nearest-neighbor’s transfers only. Most convenient is
high-symmetry I'—(r, r, 7r) direction.!® In Fig. 7 dispersion
along this direction around Fermi level is shown. Black line
with diamonds is pure DMFT electronic spectrum while gray
(red) line with circles represents the result of DFMT+2.,,
calculations. Electronic and phonon kinks are marked with
arrows.

Finally we address the behavior of phonon kinks in elec-
tronic spectrum as a function of Hubbard interaction U. As
U/2D ratio grows Fermi velocity in Eq. (10) goes down so
that momentum shift of kink position dp moves away from
pr while kink energy remains at wp. This is confirmed by our
direct DMFT +2, i calculations producing the overall picture
of spectrum evolution shown in Fig. 8.
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FIG. 7. (Color online) Quasiparticle dispersions obtained from
standard DMFT (black lines with diamonds) and DMFT+3,,;, (red
lines with circles) around the Fermi level and along the part of
high-symmetry direction I'= (7, r, ).
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FIG. 8. (Color online) Quasiparticle dispersions around Fermi
level with phonon kinks obtained from DMFT+2ph calculations for
different interaction strengths U/2D=0.5, 0.75, and 1.0; A=0.8 and
wp=0.1 D.

IV. CONCLUSION

This work analyzes strongly correlated electrons, treated
within DMFT approach to the Hubbard model, interacting
with Debye phonons. EPI is treated within the adiabatic ap-
proximation (Migdal theorem), allowing the neglect of ver-
tex corrections for A < ;—Z ~10.'> However some authors ex-
pressed different point of view that due to polaronic effects,
applicability of Migdal theorem is restricted to A<<1."

DMFT+2,,, approach allows us to use the standard momen-
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tum space representation for phonon self-energy [Eq. (3)]
while the general structure of DMFT equations remains in-
tact.

Mild EPI leads to rather insignificant changes in electron
density of states, both in correlated metal and in Mott-
insulator state, slightly inhibiting metal to insulator transition
with increase in U. However, kinks in the electronic disper-
sion due to EPI dominate for the most typical values of the
model parameters, making kinks of purely electronic nature,
predicted in Ref. 10, hardly observable. Special care (fine
tuning) of model parameters is needed to separate these
anomalies in electronic dispersion in strongly correlated sys-
tems.

We have also studied phonon kinks evolution with the
strength of electronic correlations demonstrating the signifi-
cant drop in the slope of electronic dispersion close to the
Fermi level with the growth of Hubbard interaction U. We
believe that these results may be of importance in further
studies of the evolution of electronic spectra in highly corre-
lated systems, such as copper oxides.
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